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Overview

1 ”Classical” Optimization
Levenberg-Marquadt

2 Modern/DL Approaches to Optimization
Stochastic Gradient Descent
Natural Gradients
Adam
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Gauss Newton - Setup

we want to minimize the function: r : Rn → Rm

||r(x)||2 =
n∑

i=1

ri (x)2

Linearize with a (first-order) Taylor Expansion. Let J(xk) be the
Jacobian of r at xk

x0 acts as our initial guess of where the minimum is

r(xk) ≈ r(xk) + J(xk)(x − xk)
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Gauss Newton - Nonlinear Least Squares

If we let Ak = J(xk) and bk = J(xk)xk − r(xk)

||r(x)||2 ≈ ||r(xk) + J(xk)(x − xk)||2 = ||Akx − bk ||2

(recall) Solved by
xk+1 = (AT

k Ak)−1Akbk

no guarantee of convergence!
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Gradient Descent

Move in the direction of the gradient

xk+1 = xk − ηJ(xk)

Always converges (but sometimes to local optima)
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Levenberg-Marquadt

A combination of gradient descent and Gauss Newton

Take steps in gradient descent direction at first

Approaches Gauss-Newton with smaller steps and accelerates to a
minimum

xk+1 = xk − (JT J + λI )−1J(xk)
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Stochastic Gradient Descent

Approximate true cost function by measuring error on individual
update term

Adding a momentum term gives a nifty new update rule

xk+1 = xk − (ηJ(xk) + α∆x)

Better computational performance
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Natural Gradient Descent - background

Definitions: (Sorry)
Kullback-Leibler (KL) Divergence: A metric for measuring how two
distributions diverge

DKL(P||Q) =
∑
i

P(i) log
P(i)

Q(i)

Between two normal distributions:

KL(p, q) = log
σ2
σ1

+
σ21 + (µ1 − µ2)2

2σ22
− 1

2

Fisher Information Matrix: Gives us the ”curvature” of the KL-divergence

|I(θ)ij | = (
∂2

∂θ′iθ
′
j

D(θ||θ′))
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Natural Gradient Descent - Idea

Standard gradient descent allows shift in the weight distributions that
can be larger in the context of the weights as a whole

We can take steps inversely proportional to the fisher information
matrix to control the change in parameter distrubution

naturalGrad = inverse(fisher) * sgd
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Adagrad

What if we had different learning rates for different weights?

θt+1 = θt −
η√

Gt + ε
· gt

Gt is a diagonal matrix containing sum of squared gradients

Don’t have to tune a learning rate!

If one wishes to obtain something, something of equal value must be
given. This is the law of equivalent exchange
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Adaptive Moment Estimation (Adam)

Store a decaying average of past squared gradients and past gradients

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g2
t

This (along with some bias corrections...) tgives us the Adam update
rule

θt+1 = θt −
η√

v̂t + ε
m̂t
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https://see.stanford.edu/materials/lsoeldsee263/07-ls-reg.pdf

http://people.duke.edu/ hpgavin/ce281/lm.pdf

http://kvfrans.com/what-is-the-natural-gradient-and-where-does-it-
appear-in-trust-region-policy-optimization/

http://ruder.io/optimizing-gradient-descent/

Rapha et Manas
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