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Overview

@ ' Classical” Optimization
@ Levenberg-Marquadt

9 Modern/DL Approaches to Optimization
@ Stochastic Gradient Descent
o Natural Gradients
e Adam
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Gauss Newton - Setup

@ we want to minimize the function: r : R" — R™

n

1r(IIZ =D ri(x)?

i=1

o Linearize with a (first-order) Taylor Expansion. Let J(xk) be the
Jacobian of r at xi

@ X acts as our initial guess of where the minimum is

r(xg) = r(xg) + J(xx)(x — xk)
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Gauss Newton - Nonlinear Least Squares

o If we let Ax = J(Xk) and by = J(Xk)Xk — I’(Xk)
PO 2 Hlr (k) + J0a) (x = xi)l12 = (| Awx — bi |2

@ (recall) Solved by
Xk+1 = (A[Ak)ilAkbk

@ no guarantee of convergence!
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Gradient Descent

@ Move in the direction of the gradient
Xkr1 = Xk — N (xk)

@ Always converges (but sometimes to local optima)
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Levenberg-Marquadt

@ A combination of gradient descent and Gauss Newton
@ Take steps in gradient descent direction at first

@ Approaches Gauss-Newton with smaller steps and accelerates to a
minimum
X1 = xk — (JTT+ M) ()
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Stochastic Gradient Descent

@ Approximate true cost function by measuring error on individual
update term

@ Adding a momentum term gives a nifty new update rule
Xk+1 = Xk — (nd(xk) + ax)

@ Better computational performance
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Natural Gradient Descent - background

Definitions: (Sorry)

Kullback-Leibler (KL) Divergence: A metric for measuring how two
distributions diverge

/)
Dk (P||Q) = ZP 0

Between two normal distributions:

2 2
oy o7+ (u1 — p2 1
KL(p.q) = log 22 + 7L U Ziel 1

o1 205 2

Fisher Information Matrix: Gives us the "curvature” of the KL-divergence
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Natural Gradient Descent - Idea

@ Standard gradient descent allows shift in the weight distributions that
can be larger in the context of the weights as a whole

mean: 1

- mean: 1 -
mean: -| mean: -1 ey s

stddev: | stddev: 1| gtddev: 5

@ We can take steps inversely proportional to the fisher information
matrix to control the change in parameter distrubution
naturalGrad = inverse(fisher) * sgd
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Adagrad

@ What if we had different learning rates for different weights?

n
Or11 =0 — ———-
t+ t m gt
@ G; is a diagonal matrix containing sum of squared gradients
@ Don't have to tune a learning rate!

@ If one wishes to obtain something, something of equal value must be
given. This is the law of equivalent exchange
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Adaptive Moment Estimation (Adam)

@ Store a decaying average of past squared gradients and past gradients
my = Bime_1 + (1 — B1)g:

Ve = Bave1 + (1 — B2)g?

@ This (along with some bias corrections...) tgives us the Adam update
rule

A

my

9t+1 = 9t -

~

Vi + €
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Theorem 4.1. Assume that the function f; has bounded gradients, |V f;(0)||2 < G, IV fe ()] <

G forall @ € R? and distance between any 0, generated by Oy — Oz < D,
. 2

[|6m — Onllse < Do forany m,n € {1,...T}, and 31, 55 € [0,1) sansfv —L < 1. Let oy = \/r

and 3y = B1ATTL N € (0,1). Adam achieves the following guarantee, for aH T > 1.

o1+ 3)G D2 G Ba
RT) < o0 20 -51 Z T‘»"‘WZ||gl'rz”2+227/\)2

Our Theorem 4.1 implies when the data features are sparse and bounded gradients, the sum-
mation term can be much smaller than its upper bound Z gl << dGL VT and
Z‘.:I \/TT, << dG.v'T, in particular if the class of function and data features are in the form of
section 1.2 in (Duchi et al., 201 1). Their results for the expected value E[ f[:l |17 ||2] also apply
to Adam. In particular, the adaptive method, such as Adam and Adagrad, can achieve Q(log dv/T),

an improvement over O(VdT') for the non-adaptive method. Decaying 3, ; towards zero is impor-
tant in our theoretical analysis and also matches previous empirical findings, e.g. (Sutskever et al.,
2013) suggests reducing the momentum coefficient in the end of training can improve convergence.

Finally, we can show the average regret of Adam converges,

Corollary 4.2. Assume that the function f; has bounded gradients, |V f1(0)|2 < G, |V f1(8)| -« <
G forall 8 € R and distance between any 0, generated by Adam is bounded, |6, — 0., ||2 < D,
|| — Oullse < Do for any m,n € {1,...,T}. Adam achieves the following guarantee, for all
T>1

R(T) ) 1 )
T vT
This result can be obtained by using Theorem 4.1 and Z “illoirilz € dG. VvT. Thus,
limy_ o @ =0.
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https://see.stanford.edu/materials/Isoeldsee263/07-Is-reg.pdf
http://people.duke.edu/ hpgavin/ce281/Im.pdf

http://kvfrans.com/what-is-the-natural-gradient-and-where-does-it-
appear-in-trust-region-policy-optimization/

http://ruder.io/optimizing-gradient-descent/

Rapha et Manas
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