
gtagency.github.iohack.gt

An Introduction to Robotics
and Artificial Intelligence

Sahit Chintalapudi

https://gtagency.github.io/
https://hack.gt/

Outline

- Introduction to the robots
- Velocity Control
- Gradient Descent
- Position Control
- Maze Solving
- (Brief Intro to) Multi-Agent Systems
- Robot Homing

The Robotarium

“If you have a good[sic] idea, you should be able to run your idea and test it on real
robots”

http://www.youtube.com/watch?v=W68BmRtUNlw

Getting Started

- Install Python3
- https://www.python.org/downloads/

- Install git
- https://git-scm.com/downloads

- Setup the Robotarium Simulator (Mac/Linux)
- git clone https://github.com/robotarium/robotarium_python_simulator
- cd robotarium_python_simulator
- git checkout gritsbotx
- sudo pip3 install .

- Setup the workshop starter code (Windows - In a command prompt as administrator)
- git clone https://github.com/robotarium/robotarium_python_simulator
- cd robotarium_python_simulator
- git checkout gritsbotx

- pip install . ON WINDOWS TRY py -3 -m pip install .
- Setup the workshop starter code

- git clone https://github.com/chsahit/hgt_workshop

https://www.python.org/downloads/
https://git-scm.com/downloads
https://github.com/robotarium/robotarium_python_simulator
https://github.com/robotarium/robotarium_python_simulator
https://github.com/chsahit/hgt_workshop

Fundamentals: Velocity Control

● Let’s get familiar with the robotarium library and simulator
● Question: Given a single robot, how we can set its velocity?
● Answer: Using a text editor of your choice, open set_velocity.py

Exercise 1: Setup

- Our robot is sitting somewhere on the side of a bowl and we want it to
navigate to the bottom of the bowl

- We can model the bowl as f(x) = x1
2 + x2

2 and its’ gradient as ∇f = [2x1, 2x2]
- f: Rn→R

Exercise 1: Gradient Descent

- Gradient Descent is an algorithm that looks for (local) minima of a function f
- Start out with a random vector x0

- The update rule we use is

xt + 1 = xt - η∇f(xt)

Image source: https://hackernoon.com/gradient-descent-aynk-7cbe95a778da

Exercise 1 Continued: Momentum

- Let’s look at functions with multiple minima
- What problem do we run into here? How can we address it?

Exercise 1 Continued: Momentum

- The robot gets stuck in a “local minima”
- All the gradients are 0 but we can clearly reach lower values

- New update rule. Let x0 be initialized to a random vector and initialize v to 0

vt + 1 = μvt
 - η∇f(xt)

xt + 1 = xt + vt + 1

Fundamentals: Position Control

- Define the pose of the robot as the vector [x, y]
- This is as opposed to the velocity based control we were previously using, which defined the

pose as [ẋ, ẏ]

- Open up set_pose.py in an editor of your choice so we can see how to do this

Fundamentals: Search Graphs

- A graph is an object G = (V, E) where V is a set of vertices and E is a set of
edges connecting those vertices

- A set’s elements are unique; there are no repeat values!

- The vertex set will be defined by the states the robot can take on
- The edge set will be defined by the actions the robot can take at every state to

transition between states
- Each edge has an associated cost, in this example the cost is the length of the

edge.

Fundamentals: Graph Searches

- Given a graph, start vertex, and end vertex, we want to find a list of edges that
connect the start and end vertices. This ordered list of edges is called a path.

- The cost of a path is the sum of the edge costs. We want to minimize this cost.
- A priority queue is a data structure that stores (priority, data) tuples.
- Popping from a priority queue returns the (in this case) lowest priority data

Fundamentals: Heuristics

- A function h(s) is a heuristic function that maps a state to its’ “heuristic value”.
- The value is admissible: the heuristic is never greater than the true cost between s and the goal
- The value is consistent: given a state s and an arbitrary neighbor n, h(s) ≤ c(s, n) + h(p)

- Why is the euclidean distance between two states considered a valid
heuristic?

Fundamentals: A*

Source: Maxim Likhachev http://www.cs.cmu.edu/~maxim/classes/robotplanning_grad/lectures/astar_16782_fall18.pdf

Exercise: Solve a maze

- The robot has a green food pellet in the environment, but there are a lot of
obstacles in the way!

- We can use A* to navigate the robot to the food pellet quickly

Fundamentals: Multi-Agent Systems

- A robot is considered an autonomous agent
- When we have multiple robots operating together in an environment, it is

called a multi-agent system
- Examples:

- Autonomous vehicles that can communicate driving down a road
- A swarm of drones scattering through an environment for monitoring purposes
- Modeling schools of animals (e.g fish or ants)

Exercise: Robot Homing

- Let’s add another agent to the mix at the robotarium and see what happens!
- We have one robot that is randomly moving around the environment
- Program a second robot to “hone in” on the first

